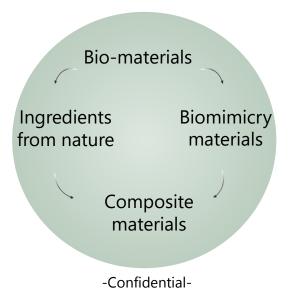
SMART RESIIN


Bio-materials

The Earth's natural resources are vital to the survival and development of the human population.

However, these resources are limited by the Earth's capability to renew them.

Biomimetics is a design of materials in which inspirations are elicited from nature. Recombinant proteins are an example of such.

Until now, recombinant protein are mainly used for research purposes. Their industrial use is driven by the cost-effectiveness, ease of the process, and rapid speed that produces high-quality yields.

Proteins in Cosmetics

Proteins are a common ingredient in cosmetics, particularly in skin

and hair care products.

They are believed to have nourishing and conditioning properties and are often used to strengthen and repair the skin and hair.

Proteins, being the fundamental building blocks of our body, possess unique properties that make them a perfect fit for green cosmetics.

Resilin

Resilin, a naturally occurring, glycine and proline rich protein has elastic properties that allow it to stretch and bounce back without breaking, making it a perfect ingredient for anti-aging and anti-wrinkle products.

It is also a natural and environmentally friendly alternative to synthetic ingredients commonly found in cosmetics.

By incorporating resilin into products, it can provide a unique and effective solution for cosmetics needs.

Resilin Qualities

- ✓ High elasticity
- ✓ High resilience
- ✓ Fatigue resistance
- \checkmark High tensile stress
- ✓ Energy storage
- \checkmark Low deformation
- ✓ Biological Compatibility
- ✓ Environmental Resistance: UV, Temperature

Material	Elastic modulus (MPa)	Tensile strength (MPa)	Failure strain (%)	Resilience (%)	Toughness (MJm-3)	Sustainability
Resilin	2	4	190	92	4	V
Elastin	1.1	2	150	90	1.6	V
Collagen	1200	120	13	90	6	V
Dragline silk	10000	1000-4000	27-35	35	160	V
Silkworm fibroin	12	7000	600	18	70	V
Wheat gluten fibers	226	5000	115	23	low	V
Synthetic Rubber	12	1	50	850	100	х
Silicon elastomers	0.5-62	0.138-165	5.00 - 1490	25-65	low	Х

	<u>In V</u>	<u>'itro</u>	<u>In Vivo</u>		
	Cell viability and	Cell attachment	Minimal to no	Retained normal	
	cytocompatibility	spreading and	inflammation	properties and	
		proliferation	reactions	recovery	
RLP	HFFF2 [human fetal		Injection to vocal fold,		
	foreskin fibroblast] [3]		murine subdermal		
			dorsum [1]		
RLP hydrogel	NIH 3T3 fibroblasts [5]	Human Bone Marrow	Injection to vocal fold,	Injection to vocal fold,	
		Mesenchymal Stem	rabbit [1]	rabbit [1]	
		Cells [1]			
		Human mesenchymal	Subdermal Injection,	Subdermal Injection,	
		stem cells (hMSCs) [4]	wild-type BALB/C	wild-type BALB/C	
			male mice [2]	male mice [2]	
		NIH 3T3 fibroblasts	Subcutaneous	Subcutaneous	
		[5]	transplantation, rat	transplantation, rat	
			model [4]	model [4]	

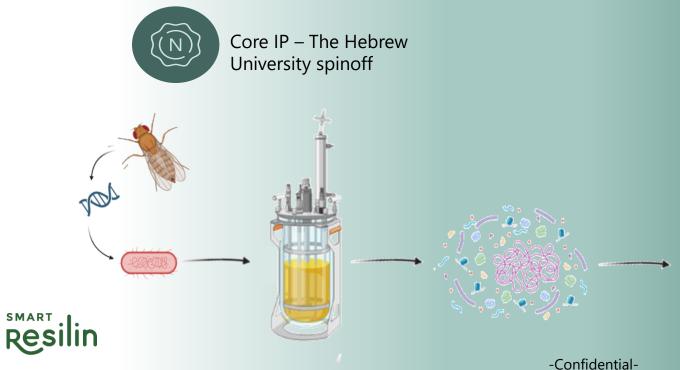
Resilin

Resilin and Cosmetics

Resilin protein is believed, in addition to its known elastic properties, to improve the hydrating or softening effect of skin and hair.

Resilin in cosmetic aspect

- Hydrating properties
- Coating layer
- UV-blocking agent
- Specific binding domains for strong interactions
- Electrostatic and weak interaction
- Biocompatibility and cells proliferation



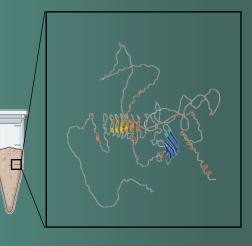
Smart Resilin- Our Secret Sauce

Biomimicry

Harnessing nature power- Resilin can be tailored fit with other materials and various binding domains

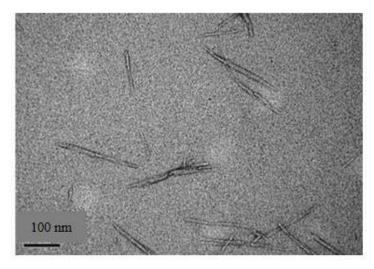
Cutting Edge Technology

Using genetic engineering techniques, we clone the DNA into bacterial cells to produce the resilin for us


Breakthrough

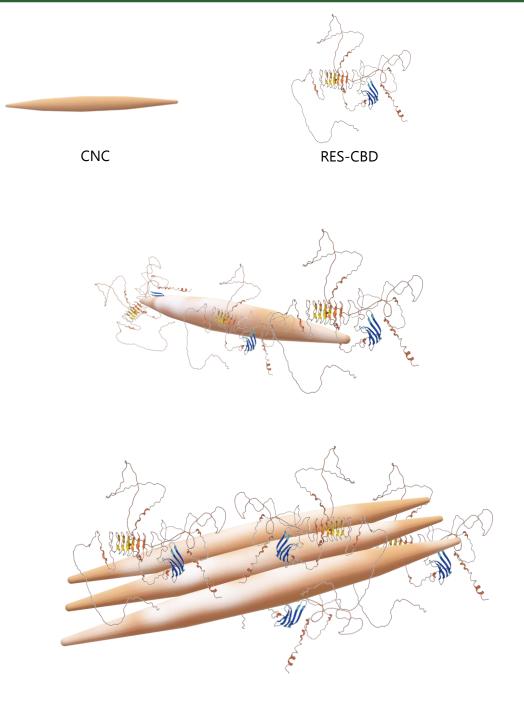
Forefront of innovation as first to develop industrial scale production of eco-friendly, sustainable with circular economy Resilin

Protein produced in simple fermentation process



RES-CBD by Smart Resilin

Mimicking Nature, we replaced the chitin biding domain with a

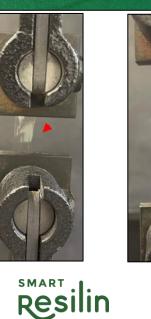

cellulose binding domain, generating RES-CBD.

RES-CBD enables to generate novel nanocomposite materials with outstanding mechanical properties.

TEM image of individual CNCs. Verker R. et al, 2014

RES-CBD by Smart Resilin in Cosmetics

- Our scientists developed Resilin formulations and composites for cosmetics
- Resilin was found to be a UVB absorber
- Resilin act as a cell growth promoter
- Resilin is suggested as a softening and hydration agent
- Resilin is suggested as anti frizz compound (hair)
- Resilin was found as hair and skin restorer
- Resilin is compatible with other biopolymers for the fabrication of films and hydrogels
- Resilin formulation was tested for skin and hair care



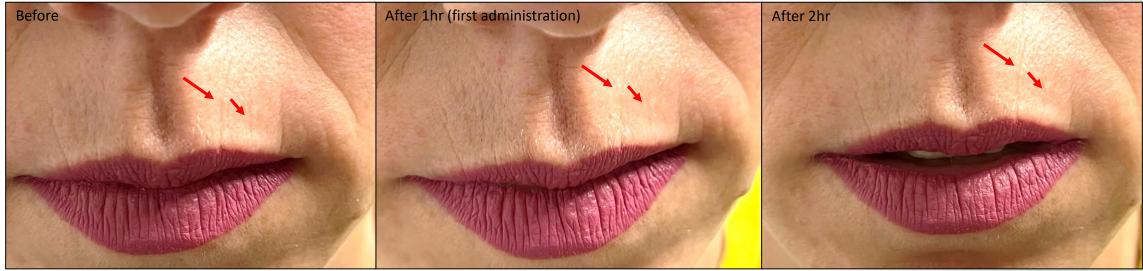
Resilin POCs in Cosmetics

Film Formation

Anti-wrinkle effect

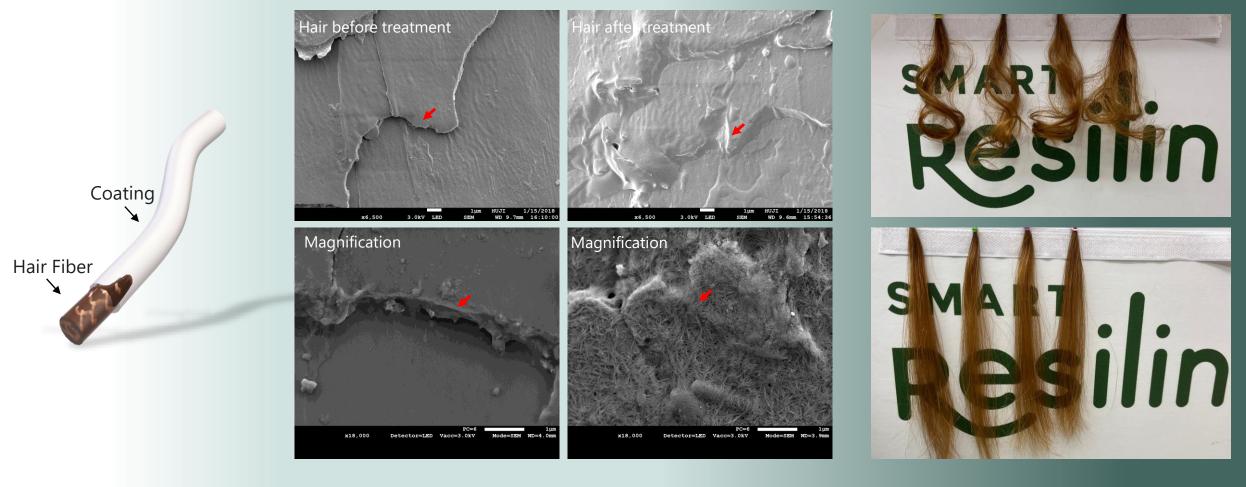
Novel hair reinforcement and smoothening approach based on Smart Resilin' IP

Resilin "Reviving" Treatment



Anti-wrinkle Effect

Anti-wrinkle Immediate Effect



Smart Resilin Hair Botox

• Using only natural, healthy materials, hair structure does not change its nature

Resilin

Resilin Fabrication

RES-CBD Films

RES-CBD Hydrogels

Recombinant exon-encoded resilins for elastomeric biomaterials

Guokui Qin ^{a,1}, Amit Rivkin ^{b,1}, Shaul Lapidot ^b, Xio Hu ^a, Itan Preis ^b, Shira B. Arinus ^b, Or Dgany ^c, Oded Shoseyov ^{b,**}, David L. Kaplan ^{a,*}

3D Printing of Resilin in Water by Multiphoton Absorption Polymerization

RES-CBD 3D ink

Doron Kam, Aaron Olender, Amir Rudich, Yoav Kan-Tor, Amnon Buxboim, Oded Shoseyov, and Shlomo Magdassi

RES-CBD Composites

Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals

Amit Rivkin,¹ Tiffany Abitbol,^{1,2} Yuval Nevo,¹ Ronen Verker,³ Shaul Lapidat,¹ Anton Komarov,⁴ Stephen C. Veldhuis,³ Galit Zilberman,⁵ Meital Reches,⁶ Emily D. Cranston,² and Oded Shoseyov¹

Insertion of nano-crystalline cellulose into epoxy resin via resilin to construct a novel elastic adhesive

R. Verker, A. Rivkin, G. Zilberman

